有时候,手机录制的视频在剪映专业版中导入时会提示:
导致画面异常偏红。
解决方法:
选中视频,切换到“调节”,在“HSL”选项卡中,调节红色的色相到合适的位置
虽然不完美,但这样基本能还原到原来的色彩。
目前发现的缺点是人物嘴唇颜色会变得过淡,可以在“画面”-“美颜美体”-“美妆”中使用口红来弥补。
因需要将服务商账户改为月结账户,在抖店“电子面单”页面无法修改已申请的服务商,只能取消合作,再重新开通,这会导致易打单无法打印面单,提示“请设置抖音电子面单地址”。
解决方法是进入易打单,在“批量打印”页面点击“设置模板”,抖店电子面单项刷新并重新勾选,保存。
有一个项目,在 VS2022 中正常打开,在 VS2019 中无法加载项目,项目目标框架是 .NET Standard 2.0。报错内容:
error: 无法打开项目文件。 .NET SDK 的版本 7.0.306 至少需要 MSBuild 的 17.4.0 版本。当前可用的 MSBuild 版本为 16.11.2.50704。请将在 global.json 中指定的 .NET SDK 更改为需要当前可用的 MSBuild 版本的旧版本。
解决方法:
运行 Visual Studio Installer,选择 Visual Studio 2019 进行修改,切换到“单个组件”,勾选“.NET SDK (out of support)”,会联动勾选“.NET 5.0 Runtime (Out of support)”与“.NET Core 3.1 Runtime (Out of support)”。
尝试设置 Windows 系统设置:
设置→系统→系统信息→高级系统设置→性能下面点设置→调整为最佳外观
然并卵。
安装编解码器亲测有效!
推荐 K-Lite,下载地址:
K-Lite Codec Pack Basic (codecguide.com)
下载后按默认设置安装即可。
本文将详细介绍 stable diffusion webui 的下载、安装及问题解决。
Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,尽管它也可以应用于其他任务,如内补绘制、外补绘制,以及在提示词(英语)指导下产生图生图的翻译。它是一种潜在扩散模型,由慕尼黑大学的 CompVis 研究团体开发的各种生成性人工神经网络。它是由初创公司 StabilityAI,CompVis 与 Runway 合作开发的,并得到 EleutherAI 和 LAION 的支持。
其它问题请参考:
运行使用时问题《Windows 使用 Stable Diffusion 时遇到的各种问题整理》;
模型运用及参数《Stable Diffusion 个人推荐的各种模型及设置参数、扩展应用等合集》;
提示词生图咒语《Stable Diffusion 提示词词缀使用指南(Prompt)》;
不同类的模型Models说明《解析不同种类的 Stable Diffusion 模型 Models》;
绘制人物动作及手脚细节《Stable Diffusion 准确绘制人物动作及手脚细节(需 ControlNet 扩展)》;
各种风格对比及实际运用《AI绘图风格对照表/画风样稿详细研究记录及经验总结》;
一、环境准备
(一)硬件方面:
1. 显存
4G 起步,4G 显存支持生成 512*512 大小图片,超过这个大小将卡爆失败。
2. 硬盘
10G 起步,模型基本都在 5G 以上,有个 30G 硬盘不为过吧?现在硬盘容量应该不是个问题。
(二)软件方面:
1. Git
https://git-scm.com/download/win
下载最新版即可,对版本没有要求。
2. Python
https://www.python.org/downloads/
截止发稿(2023.3.6)时,最高版本只能用 3.10.*
,用 3.11.*
会出问题。
3. Nvidia CUDA
https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_516.94_windows.exe
版本 11.7.1,搭配 Nvidia 驱动 516.94,可使用最新版。
4. stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui
核心部件当然用最新版本~~但注意上面三个的版本的兼容性。
5. 中文语言包
https://github.com/VinsonLaro/stable-diffusion-webui-chinese
下载 chinese-all-0306.json
和 chinese-english-0306.json
文件
6. 扩展(可选)
https://github.com/Mikubill/sd-webui-controlnet
下载整个 sd-webui-controlnet
压缩包
https://huggingface.co/Hetaneko/Controlnet-models/tree/main/controlnet_safetensors
https://huggingface.co/lllyasviel/ControlNet/tree/main/models
https://huggingface.co/TencentARC/T2I-Adapter/tree/main
试用时先下载第一个链接中的 control_openpose.safetensors
或 第二个链接中的 control_sd15_openpose.pth
文件
7. 模型
https://huggingface.co/models
https://civitai.com
可以网上去找推荐的一些模型,一般后缀名为 ckpt
、pt
、pth
、safetensors
,有时也会附带 VAE(.vae.pt
)或配置文件(.yaml
)。
类型 | 文件格式 | 存放目录 | 备注 |
---|---|---|---|
check point | .ckpt,.safetensors | \models\Stable-diffusion | 文件较大 |
vae | 名字带有 vae 的 | \models\vae | 细节更好地恢复,特别是眼睛和文字 |
Textual Inversion | *.pt | \embeddings | 一般文件很小,额外的 tag |
Lora | *.pt | \models\Lora | 调整模型,理解为风格化也可以 |
Hypernetworks | .pt,.ckpt,*.safetensors | \models\hypernetworks | 和 lora 工作方式相似,算法不同 |
这里可以学习一下模型的基本概念《解析不同种类的 Stable Diffusion 模型 Models,再也不用担心该用什么了》
二、安装流程
1. 安装 Git
就正常安装,无问题。
2. 安装 Python
建议安装在非 program files
、非 C 盘
目录,以防出现目录权限问题。
注意安装时勾选 Add Python to PATH
,这样可以在安装时自动加入 windows 环境变量 PATH 所需的 Python 路径。
3. 安装 Nvidia CUDA
正常安装,无问题。
4. 安装 stable-diffusion-webui
国内需要用到代理和镜像,请按照下面的步骤操作:
a) 编辑根目录下 launch.py
文件
将 https://github.com
替换为 https://ghproxy.com/https://github.com
,即使用 Ghproxy 代理,加速国内 Git。
如图将代码中所有类似地址都改掉(注意:不仅仅是图中所展示的这些)。
b) 执行根目录下 webui.bat
文件
根目录下将生成 tmp
和 venv
目录。
c) 编辑 venv
目录下 pyvenv.cfg
文件
将 include-system-site-packages = false
改为 include-system-site-packages = true
。
d) 配置 python 库管理器 pip
方便起见,在 \venv\Scripts
下打开 cmd
后执行如下命令:
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ # 镜像
pip freeze > requirements_versions.txt # 创建文件
pip install -r requirements_versions.txt # 执行此条命令前,请检查你的剩余磁盘空间
pip install xformer # 如果不执行此条命令,启动 Stable Diffusion 时可能会出现错误。xformer 还可以在后续使用中降低显卡占用。
xformer
会安装到 \venv\Lib\site-packages
中,安装失败可以用 pip install -U xformers
命试试。
e) 安装语言包
将文件 chinese-all-0306.json
和 chinese-english-0306.json
放到目录 \localizations
目录中。
运行 webui
后进行配置,操作方法见下。
f) 安装扩展(可选)
将 sd-webui-controlnet
解压缩到 \extensions
目录中。
将 control_sd15_openpose.pth
文件复制到 /extensions/sd-webui-controlnet/models
目录中。
不同的扩展可能还需要安装对应的系统,比如 controlnet
要正常使用则还需要安装 ffmpeg
等。
g) 安装模型
下载的各种模型放在 \models\Stable-diffusion
目录中即可。
h) 再次执行根目录下 webui.bat
文件
用浏览器打开 webui.bat
所提供的网址即可运行。
其中提供了网址:http://127.0.0.1:7860
。
打开该网址后在 Settings
-> User interface
-> Localization (requires restart)
设置语言,在菜单中选择 chinese-all-0220
(前提是已经在目录中放入了对应语言包,见上),点击 Apply Settings
确定,并且点击 Reload UI
重启界面后即可。
好了,现在可以开始使用了~~
三、问题及注意点
1. python 版本错误
错误:
ERROR: Could not find a version that satisfies the requirement torch==1.13.1+cu117
ERROR: No matching distribution found for torch==1.13.1+cu117
这是由于 python 版本不对导致的(上面提过了,截止发稿时不能追求新版本),要用 python 3.10.*
版本。
解决来源:https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/7166
2. pip版本错误
警告:
[notice] A new release of pip available: 22.3.1 -> 23.0.1
[notice] To update, run: D:\stable-diffusion-webui\venv\Scripts\python.exe -m pip install --upgrade pip
提示中已经给出了解决方案:
在 \venv\Scripts\
目录中打开 cmd
,执行
python.exe -m pip install --upgrade pip
3. 安装或执行停滞
如果在执行 webui.bat
进行包下载安装时或者生成图片时会卡很久都没反应,那么这时可以复制包名,进入 python 安装目录
或 \venv\Scripts\
目录中打开 cmd
,执行
pip install 包名
也可以通过任务管理查看网络状态,如果网络在玩命下载,那么就等着吧~~
4. xFormers 安装不上
很多同学都反应 xformers 无法安装,可以用以下的方法试试:
检查 Dreambooth 要求的 Python 版本:
如果您的 Python 版本低于 3.6,请安装最新的 Python 版本,并重复尝试安装 xformers。
# 据此可以在终端中运行以下命令,以检查您的 Python 版本:
python --version
安装依赖项:xformers 有许多依赖项,如果这些依赖项没有正确安装可能会导致升级失败。您可以尝试安装以下依赖项:
pip install numpy scipy torch torchaudio transformers
清除 pip 缓存并重新安装:
# 清除 xformers 缓存:运行以下命令清除 xformers 缓存。
pip uninstall -y xformers
pip cache purge
# 更新 pip:确保您正在使用最新版本的 pip,可以运行以下命令更新 pip。
pip install --upgrade pip
# 安装 xformers:在清除了缓存并更新了 pip 之后,重新安装 xformers。
pip install xformers
手动安装 xformers 指定版本
如果上述步骤仍然无法解决问题,可尝试手动安装 Dreambooth 所需的 xformers 版本。在 Dreambooth 的文档中,可以找到 xformers 的版本要求。
pip install xformers==0.0.17.dev465
使用 conda 环境
如果您使用的是 conda 环境,请尝试在 conda 环境中安装 xformers。
# 创建 conda 环境
conda create --name myenv
# 激活 conda 环境并安装 xformers
conda activate myenv
pip install xformers
网络问题
如果已经配置好了代理,就不要考虑这个了。
检查网络连接:请确保您的计算机与互联网连接,并且网络连接没有被防火墙或代理服务器阻止:
# 检查网络连接是否正常
ping google.com
非必要
你确定需要使用 xformers 么?如果不需要,可以在webui-user.bat
中把--xformers
去掉试试。其它
如果上述方法还是无法解决问题,请尝试在 OpenAI 的论坛或者 Dreambooth 的 GitHub 页面上寻求更多帮助。-_-!
5. 其他安装问题
删除 /tmp
和 /venv
目录后重启 webui.bat
试试。
6. 硬件问题
一般显卡不达标,就会爆卡,解决办法就是编辑根目录下 webui-user.bat
文件,试一下修改参数 COMMANDLINE_ARGS
即可。
以下几个设置逐一测试看看哪个适合自己。
set COMMANDLINE_ARGS=--lowvram --precision full --no-half --skip-torch-cuda-test
set COMMANDLINE_ARGS=--lowvram --precision full --no-half
set COMMANDLINE_ARGS=--lowvram
本机显存 4G,使用最后一个配置方法,可以烧出 2048*1080 的图,前两种方法反而会在最后爆卡。
最后,预祝各位成功~~
dog drink~~ where is dog?
参考:
【AI 繪畫】Stable-Diffusion 通過骨架分析插件 ControlNet 來製作超有意境的圖片
Stable Diffusion 2.1 + WebUI 的安装与使用(极详细)
低配显卡想玩 Stable Diffusion?修改一个配置就行
整合包
ChatGPT:
当你从 <textarea>
中获取到的数据中包含换行符时,如果直接在 Vue 模板中使用插值表达式 {{}}
显示,是无法保持换行的。因为在 HTML 中,多个连续的空格和换行符都会被视为一个空格,因此如果直接将 \n
显示在模板中,会被渲染成一个空格。
解决这个问题的方法之一是使用 CSS 样式来控制换行的显示。可以为显示数据的元素添加 white-space: pre-wrap;
样式,该样式可以保留换行符并自动换行。
例如,假设你的数据保存在 text
变量中,可以这样在模板中使用:
<pre style="white-space: pre-wrap;">{{ text }}</pre>
在上面的例子中,使用 <pre>
元素来包裹要显示的数据,并添加 white-space: pre-wrap;
样式,这样数据中的换行符就能被保留并自动换行了。
另外,如果你在 Vue 组件中使用了 v-html
指令来显示数据,也可以在数据中使用 <br>
标签来手动添加换行符,然后使用 v-html
来渲染数据。但是,这种方法需要注意 XSS 攻击的问题,因为 v-html
可以渲染任意的 HTML 标签和内容,如果数据中包含恶意代码,很容易被攻击者利用。
经常有人碰到这样一种情况,我的 918+ 有 4 个硬盘呢,怎么空间很快就没了,最重要的是,自己查看统计了所有文件占用情况,和实际的占用空间不符。这个首先可以肯定的就是空间必然是文件占用了。但是呢,有些文件是不能从 File Station 里面直接看到的,所以很多用户就搞不懂了,有时候文件删除了,空间也不见增加。今天,就来教大家一个大招,让这些不能直接看到的文件无处遁形。
一、SSH 登陆群晖
这里我们要用到一个叫 putty 的软件
putty下载链接:点此下载
在开始之前,我们要开启群晖的 SSH 或是 telnet 服务功能(控制台 - 终端机和 SNMP - 勾选启动 SSH 功能)。
打开 putty,在主机名称输入群晖的局域网 IP 地址,然后点击下面的【打开】。
会弹出一个黑色的窗口。登入账号输入管理员:admin,按回车,然后输入 admin 的密码,要注意的是,输入密码的时候,光标是不会动的,你尽管输就行。有些用户看到代码就头疼,其实我们用到的都是些非常简单基础的命令代码,你只要照着这个步骤一步一步去做,肯定能成功,成功把空间腾出来后,你会很有成就感,哈哈!
切换到 root 权限,输入 sudo -i,按回车,然后也是输入 admin 的密码。
MAC 电脑用终端也可以登录 :
打开终端
输入命令:ssh -p 999 admin@192.168.1.9
上面 999 为自定义端口号,admin 为自己的用户名
二、查询文件
到这里我们就登陆到群晖里面了,在这里可以执行命令。
输入 cd /volume1 命令后按回车,意思是进入存储空间 1(若您的储存空间为 2,则改成 volume2,依此类推)。
输入 du -ah --max-depth=1,可以查看当前目录文件大小,这个过程可能会需要数分钟到数小时不等,依您的文件数及空间大小而定。实测 8TB 机械硬盘耗时两个多小时。
三、删除文件
像上面图片中的 @download 就是 Download Station 的缓存文件,有时候操作不当,会造成缓存不能自动删除,这个时候就需要使用代码的方法来删除缓存,才能释放存储空间了。
比如要删除 Download Station 的缓存文件夹,就是上图的 @download 文件夹,可以使用下面这个命令:rm -rf /volume1/@download
这个命令要慎用,一旦删除就不能恢复了!
四、还有哪些文件占用存储空间而不能直接查询
除了 Download Station的缓存文件之外,还有 File Station 里面删除了文件,但启用了回收站,文件实际上还没彻底删除,也会造成删除文件,空间没有增加的情况。这个时候清空一下回收站即可。
清除某个文件夹回收站:
也可以直接一次性清空所有文件夹的回收站:
还有 Drive 的版本控制和 Drive本身自带的回收站;
@synologydrive/@sync/repo 是 Synology Drive Client 的缓存目录,我删除这个目录就释放了 5TB 的空间。
除此之外,还有 Cloud Station 保留的版本,Snapshot Replication 套件生成的快照文件等。
如果发现 /volume1/@synologydrive/@sync/repo/ 这个目录占用空间过大,请参考这篇文章。
在代码
app.Run();
处报错:
System.IO.IOException:“Failed to bind to address http://localhost:5182.”
SocketException: 以一种访问权限不允许的方式做了一个访问套接字的尝试。
原因是端口被占用,解决方法:
方法一、重启电脑可能解决该问题。
方法二、使用命令 netstat -ano 找到占用该端口的进程,关闭即可。
方法三、修改运行端口。展开解决方案资源管理器中项目根目录下的“Properties”目录,打开“launchSettings.json”,找到对应你运行方式的配置,修改相应 Url 中的端口。