一年前记录过浏览器上如何下载小鹅通的课程视频,现在发现那个插件已经不能用了,所以重新整理了一下,下载过程比上次简单多了。
插件还是那只可爱的小黄猫
GitHub 地址:https://github.com/xifangczy/cat-catch
浏览器扩展安装地址:Chrome / Edge / Firefox
与之前相比,功能改进了不少:
“从头捕获”,不需要手动拖动进度条,生怕没有录制完全。但是实际使用还是会丢失一部分开头,希望下个版本改进;
“使用 ffmpeg 合并”可以自动合并捕获的视频和音频,下载得到的是一个完整的视频文件;
“自动跳转到缓冲尾”可以不间断加载、节省录制时间,对下载非直播画面非常有用;
可以设置播放速度,点击扩展图标,在“其他页面 / 媒体控制”中可以设置。但是有了“自动跳转到缓冲尾”,我觉得设置播放速度这个功能可有可无。
开始录制:
在浏览器上安装扩展后,打开需要录制视频的页面,点击缓存捕获:
然后在面板上点击“从头捕获”:
插件就自动开始从头播放并记录缓存了。
建议勾选“完成捕获自动下载”、“使用 ffmpeg 合并”。
如果是录制“非直播”,建议勾选“自动跳转到缓冲尾”。
另外两个选项“始终从头捕获”、“清理多余头部数据”我没有深入研究,有兴趣的自己研究下。
播放完成后,会自动打开一个“猫抓 cat-catch”的网页,自动使用 ffmpeg 进行转码与合并。
完成后自动下载该文件。
提示:如果要继续捕获其它视频,请先关闭那个“猫抓 cat-catch”网页,否则捕获完成后无法下载。
本文过程较为复杂,且部分内容已无法实现,建议点击这里查阅最新的操作方法!
前言:本文操作需要你具备浏览器安装和使用扩展插件的能力、以及简单的使用命令行的能力。
第一步:下载视频
首先我使用 Edge 浏览器(Chrome 操作类似,不过安装扩展需要科学上网)。
2023 年初的时候,用 FetchV 这个扩展是非常方便的,它会自动嗅到网页中的视频,即使没有嗅到也可以用录制的方式来保存。
但到了过了一两个月发现 FetchV(及其马甲)经常打不开,或者无法嗅到视频流,更别提录制了。
所以我找到了另一款专业视频下载神器:
当然它的马甲们用法也是大同小异,主界面是这样的:
开启捕获,同意下载多个文件,然后播放视频,耐心等待。
心急的朋友可以用修改播放速度的扩展(如 视频加速减速控制),例如用 16 倍速,那么一个 16 分钟的视频用 1 分钟就播放完成了。(或者在 F12 的控制台中使用 JS 代码加速:document.querySelector('video').playbackRate = 16; )
等小浮框提示“捕获完成 点击下载”的时候就可以保存到磁盘上了。
第二步:音频修复
下载后它会有两个 .mp4 文件保存到电脑上,其中较大的是视频部分,较小的是音频部分。
但是有个小问题是,这个音频文件用 Windows 自带播放器播放正常,用 potplayer 等第三方播放器或者一些视频编辑软件播放就会有问题。
我在 Microsoft Store 中找了一款叫 Movie Maker - Video Editor 的应用,
在这个软件中添加刚才的只有音轨的视频文件会提示转码,转码后的 .mp4 文件音轨就正常了。
具体步骤是依次点击“Create New Project”,“Add clip”,“Photo/Video”,选择文件后“Transcode”,保存以后默认会在文件名后加上“ (Transcoded).mp4”。
第三步:音视频合成
接下来是合成视频和音频,将视频文件命名为 v.mp4,音频文件命名为 a.mp4。
在 FFmpeg 官网下载 Windows 版,然后使用这个命令从音频文件中提取音轨:
ffmpeg -i a.mp4 -vn -acodec copy a.aac
再用这个命令将 v.mp4 的视频和 a.aac 的音频合成一个新的文件
ffmpeg -i v.mp4 -i a.aac -c:v copy -c:a copy -map 0:v:0 -map 1:a:0 output.mp4
相比于其它的视频转换工具,ffmpeg 直接提取合并的速度是极快的。
Tips:
小鹅通中学习过的课程再次打开会从上次关闭的地方开始播放,这会导致捕获不全,可以将进度条手动拖到末尾,这样它会停止播放,再次刷新就会从头开始播放。
浮框中“点击下载”可能没反应,估计是在合成文件,过几秒钟多点几下,不会重复下载。
如果要下载的视频比较长或者比较多,可以像我一样在虚拟机里进行,把视频播放器的音量开到最大,把操作系统的声音关闭。
本文将详细介绍 stable diffusion webui 的下载、安装及问题解决。
Stable Diffusion 是 2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,尽管它也可以应用于其他任务,如内补绘制、外补绘制,以及在提示词(英语)指导下产生图生图的翻译。它是一种潜在扩散模型,由慕尼黑大学的 CompVis 研究团体开发的各种生成性人工神经网络。它是由初创公司 StabilityAI,CompVis 与 Runway 合作开发的,并得到 EleutherAI 和 LAION 的支持。
其它问题请参考:
运行使用时问题《Windows 使用 Stable Diffusion 时遇到的各种问题整理》;
模型运用及参数《Stable Diffusion 个人推荐的各种模型及设置参数、扩展应用等合集》;
提示词生图咒语《Stable Diffusion 提示词词缀使用指南(Prompt)》;
不同类的模型Models说明《解析不同种类的 Stable Diffusion 模型 Models》;
绘制人物动作及手脚细节《Stable Diffusion 准确绘制人物动作及手脚细节(需 ControlNet 扩展)》;
各种风格对比及实际运用《AI绘图风格对照表/画风样稿详细研究记录及经验总结》;
一、环境准备
(一)硬件方面:
1. 显存
4G 起步,4G 显存支持生成 512*512 大小图片,超过这个大小将卡爆失败。
2. 硬盘
10G 起步,模型基本都在 5G 以上,有个 30G 硬盘不为过吧?现在硬盘容量应该不是个问题。
(二)软件方面:
1. Git
https://git-scm.com/download/win
下载最新版即可,对版本没有要求。
2. Python
https://www.python.org/downloads/
截止发稿(2023.3.6)时,最高版本只能用 3.10.*
,用 3.11.*
会出问题。
3. Nvidia CUDA
https://developer.download.nvidia.cn/compute/cuda/11.7.1/local_installers/cuda_11.7.1_516.94_windows.exe
版本 11.7.1,搭配 Nvidia 驱动 516.94,可使用最新版。
4. stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui
核心部件当然用最新版本~~但注意上面三个的版本的兼容性。
5. 中文语言包
https://github.com/VinsonLaro/stable-diffusion-webui-chinese
下载 chinese-all-0306.json
和 chinese-english-0306.json
文件
6. 扩展(可选)
https://github.com/Mikubill/sd-webui-controlnet
下载整个 sd-webui-controlnet
压缩包
https://huggingface.co/Hetaneko/Controlnet-models/tree/main/controlnet_safetensors
https://huggingface.co/lllyasviel/ControlNet/tree/main/models
https://huggingface.co/TencentARC/T2I-Adapter/tree/main
试用时先下载第一个链接中的 control_openpose.safetensors
或 第二个链接中的 control_sd15_openpose.pth
文件
7. 模型
https://huggingface.co/models
https://civitai.com
可以网上去找推荐的一些模型,一般后缀名为 ckpt
、pt
、pth
、safetensors
,有时也会附带 VAE(.vae.pt
)或配置文件(.yaml
)。
类型 | 文件格式 | 存放目录 | 备注 |
---|---|---|---|
check point | .ckpt,.safetensors | \models\Stable-diffusion | 文件较大 |
vae | 名字带有 vae 的 | \models\vae | 细节更好地恢复,特别是眼睛和文字 |
Textual Inversion | *.pt | \embeddings | 一般文件很小,额外的 tag |
Lora | *.pt | \models\Lora | 调整模型,理解为风格化也可以 |
Hypernetworks | .pt,.ckpt,*.safetensors | \models\hypernetworks | 和 lora 工作方式相似,算法不同 |
这里可以学习一下模型的基本概念《解析不同种类的 Stable Diffusion 模型 Models,再也不用担心该用什么了》
二、安装流程
1. 安装 Git
就正常安装,无问题。
2. 安装 Python
建议安装在非 program files
、非 C 盘
目录,以防出现目录权限问题。
注意安装时勾选 Add Python to PATH
,这样可以在安装时自动加入 windows 环境变量 PATH 所需的 Python 路径。
3. 安装 Nvidia CUDA
正常安装,无问题。
4. 安装 stable-diffusion-webui
国内需要用到代理和镜像,请按照下面的步骤操作:
a) 编辑根目录下 launch.py
文件
将 https://github.com
替换为 https://ghproxy.com/https://github.com
,即使用 Ghproxy 代理,加速国内 Git。
如图将代码中所有类似地址都改掉(注意:不仅仅是图中所展示的这些)。
b) 执行根目录下 webui.bat
文件
根目录下将生成 tmp
和 venv
目录。
c) 编辑 venv
目录下 pyvenv.cfg
文件
将 include-system-site-packages = false
改为 include-system-site-packages = true
。
d) 配置 python 库管理器 pip
方便起见,在 \venv\Scripts
下打开 cmd
后执行如下命令:
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/ # 镜像
pip freeze > requirements_versions.txt # 创建文件
pip install -r requirements_versions.txt # 执行此条命令前,请检查你的剩余磁盘空间
pip install xformer # 如果不执行此条命令,启动 Stable Diffusion 时可能会出现错误。xformer 还可以在后续使用中降低显卡占用。
xformer
会安装到 \venv\Lib\site-packages
中,安装失败可以用 pip install -U xformers
命试试。
e) 安装语言包
将文件 chinese-all-0306.json
和 chinese-english-0306.json
放到目录 \localizations
目录中。
运行 webui
后进行配置,操作方法见下。
f) 安装扩展(可选)
将 sd-webui-controlnet
解压缩到 \extensions
目录中。
将 control_sd15_openpose.pth
文件复制到 /extensions/sd-webui-controlnet/models
目录中。
不同的扩展可能还需要安装对应的系统,比如 controlnet
要正常使用则还需要安装 ffmpeg
等。
g) 安装模型
下载的各种模型放在 \models\Stable-diffusion
目录中即可。
h) 再次执行根目录下 webui.bat
文件
用浏览器打开 webui.bat
所提供的网址即可运行。
其中提供了网址:http://127.0.0.1:7860
。
打开该网址后在 Settings
-> User interface
-> Localization (requires restart)
设置语言,在菜单中选择 chinese-all-0220
(前提是已经在目录中放入了对应语言包,见上),点击 Apply Settings
确定,并且点击 Reload UI
重启界面后即可。
好了,现在可以开始使用了~~
三、问题及注意点
1. python 版本错误
错误:
ERROR: Could not find a version that satisfies the requirement torch==1.13.1+cu117
ERROR: No matching distribution found for torch==1.13.1+cu117
这是由于 python 版本不对导致的(上面提过了,截止发稿时不能追求新版本),要用 python 3.10.*
版本。
解决来源:https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/7166
2. pip版本错误
警告:
[notice] A new release of pip available: 22.3.1 -> 23.0.1
[notice] To update, run: D:\stable-diffusion-webui\venv\Scripts\python.exe -m pip install --upgrade pip
提示中已经给出了解决方案:
在 \venv\Scripts\
目录中打开 cmd
,执行
python.exe -m pip install --upgrade pip
3. 安装或执行停滞
如果在执行 webui.bat
进行包下载安装时或者生成图片时会卡很久都没反应,那么这时可以复制包名,进入 python 安装目录
或 \venv\Scripts\
目录中打开 cmd
,执行
pip install 包名
也可以通过任务管理查看网络状态,如果网络在玩命下载,那么就等着吧~~
4. xFormers 安装不上
很多同学都反应 xformers 无法安装,可以用以下的方法试试:
检查 Dreambooth 要求的 Python 版本:
如果您的 Python 版本低于 3.6,请安装最新的 Python 版本,并重复尝试安装 xformers。
# 据此可以在终端中运行以下命令,以检查您的 Python 版本:
python --version
安装依赖项:xformers 有许多依赖项,如果这些依赖项没有正确安装可能会导致升级失败。您可以尝试安装以下依赖项:
pip install numpy scipy torch torchaudio transformers
清除 pip 缓存并重新安装:
# 清除 xformers 缓存:运行以下命令清除 xformers 缓存。
pip uninstall -y xformers
pip cache purge
# 更新 pip:确保您正在使用最新版本的 pip,可以运行以下命令更新 pip。
pip install --upgrade pip
# 安装 xformers:在清除了缓存并更新了 pip 之后,重新安装 xformers。
pip install xformers
手动安装 xformers 指定版本
如果上述步骤仍然无法解决问题,可尝试手动安装 Dreambooth 所需的 xformers 版本。在 Dreambooth 的文档中,可以找到 xformers 的版本要求。
pip install xformers==0.0.17.dev465
使用 conda 环境
如果您使用的是 conda 环境,请尝试在 conda 环境中安装 xformers。
# 创建 conda 环境
conda create --name myenv
# 激活 conda 环境并安装 xformers
conda activate myenv
pip install xformers
网络问题
如果已经配置好了代理,就不要考虑这个了。
检查网络连接:请确保您的计算机与互联网连接,并且网络连接没有被防火墙或代理服务器阻止:
# 检查网络连接是否正常
ping google.com
非必要
你确定需要使用 xformers 么?如果不需要,可以在webui-user.bat
中把--xformers
去掉试试。其它
如果上述方法还是无法解决问题,请尝试在 OpenAI 的论坛或者 Dreambooth 的 GitHub 页面上寻求更多帮助。-_-!
5. 其他安装问题
删除 /tmp
和 /venv
目录后重启 webui.bat
试试。
6. 硬件问题
一般显卡不达标,就会爆卡,解决办法就是编辑根目录下 webui-user.bat
文件,试一下修改参数 COMMANDLINE_ARGS
即可。
以下几个设置逐一测试看看哪个适合自己。
set COMMANDLINE_ARGS=--lowvram --precision full --no-half --skip-torch-cuda-test
set COMMANDLINE_ARGS=--lowvram --precision full --no-half
set COMMANDLINE_ARGS=--lowvram
本机显存 4G,使用最后一个配置方法,可以烧出 2048*1080 的图,前两种方法反而会在最后爆卡。
最后,预祝各位成功~~
dog drink~~ where is dog?
参考:
【AI 繪畫】Stable-Diffusion 通過骨架分析插件 ControlNet 來製作超有意境的圖片
Stable Diffusion 2.1 + WebUI 的安装与使用(极详细)
低配显卡想玩 Stable Diffusion?修改一个配置就行
整合包
不支持当前所选音轨的文件格式,因此无法播放视频。请尝试播放其它音轨,确认其是否支持。
打开“套件中心”,打开右上角“设置”,添加“套件来源”:http://packages.synocommunity.com/
,名称如:SynoCommunity
,确定。
切换到“常规”选项卡,将“信任层级”改为至少“Synology Inc. 和信任的发行者”。否则会提示以下错误:
安装 [ffmpeg] 失败。此套件并非由 Synology Inc. 发布。
在“套件中心”左侧会出现“社群”,找到“ffmpeg”安装。
如遇下载失败,多尝试几次。
或直接从官方网站下载 .spk 包:https://synocommunity.com/package/ffmpeg
在“套件中心”“手动安装”即可。
最近做到微信语音时用到,将微信的媒体文件(.amr)下载到自己服务器上,并转码为 .mp3 格式。
下载 FFmpeg for Windows,放在网站目录下,譬如:网站目录/bin/ffmpeg/ffmpeg.exe
转换代码
string amr = HttpRuntime.AppDomainAppPath + media.sLocalPath.Substring(1).Replace("/", @"\"); string mp3 = amr + ".mp3"; string ffmpeg = HttpRuntime.AppDomainAppPath + @"bin\ffmpeg\ffmpeg.exe"; Process p = new Process(); p.StartInfo.FileName = ffmpeg; p.StartInfo.Arguments = $@"-y -i {amr} -ar {16000} {mp3}"; p.Start(); p.WaitForExit(); p.Close();
-y 若有提示用户选择,默认“是”
-ar 采样数,微信的 amr 是 8000 Hz,如果不加这个参数转换后的 mp3 的也是 8000 Hz,但是音质下降严重,所以设成 16000 Hz 才勉强保持了音质。
WaitForExit() 是等待转码完毕才继续往下执行。
最近做到微信语音时用到,将微信的媒体文件(.amr)下载到自己服务器上,并转码为 .mp3 格式。
引用“NAudio.dll”或直接搜索 NuGet 包,将音频文件转码为 .mp3 只需要:
var data = new MediaFoundationReader("..\\amr\\test.amr"); MediaFoundationEncoder.EncodeToMP3(data, "..\\test.mp3", 码率默认192000);
若出现异常:
无法加载 DLL“mfplat.dll”: 找不到指定的模块。
原因是没有安装音频解码组件,以 Windows Server 2012 R2 为例:
打开“服务器管理器”,添加角色和功能,勾选“桌面体验”(可能在“用户界面和基础结构”,默认还会勾上“墨迹和手写服务”)
安装完成需要重启计算机。
若出现异常:
不支持给定的 URL 的字节流类型。 (异常来自 HRESULT:0xC00D36C4)
原因可能是没有能够播放 .amr 的解码器,或音频驱动!
如果还是搞不定,本站搜索 ffmpeg 吧!